Question	Answer	Marks	Guidance
1(a)	carbon dioxide escapes/leaves/lost/released OR not a closed system;	1	gas escapes/leaves/lost/released
(b)	CaO + H₂O → Ca(OH)₂ reactants; product;	2	One mark for each side correct A multiples I state symbols
(c)	M1 number of moles of $CaCO_3 = (12.5/100 =) 0.125$ or 125000 OR $56/100 = 0.56$; M2 mass calcium oxide = $(0.125 \times 56) = 7$ (tonnes) OR $0.56 \times 12.5 = 7$;	2	Correct answer scores both marks A answers in g or kg
(d)(i)	Any two from: does not wash away/insoluble/lasts a long time; does not increase pH above 7/neutral/has pH 7; naturally occurring/does not need to be processed;	2	A does not leach out
(d)(ii)	Any three from: (flue gas contains) sulfur dioxide; flue gas/sulfur dioxide is acidic; calcium carbonate reacts with sulfur dioxide; to make a salt/calcium sulfite OR neutralisation;	3	A CaCO ₃ is a base
(d)(iii)	making steel or iron/in a <u>blast</u> furnace/toothpaste/(making) glass/building/ (making) cement/treating acidic river or lakes/chalk;	1	

(а	(1)	same amount / mass / quantity / volume / number of moles of carbonate	[1] [1]
	(ii)	no more bubbles / carbon dioxide or piece disappears / dissolves	[1]
(b)	exp	periment 1 Ca ²⁺ + CO ₂ + H ₂ O	[1
(c)		more concentrated or higher concentration (of acid) (in experiment 1) accept: arguments based on collision theory	[1]
	(ii)	ethanoic acid is a weak acid or hydrochloric acid is a strong acid accept: stronger or weaker	[1]
		ethanoic acid less ionised / dissociated / lower / smaller concentration of hydrogen ion accept: less hydrogen ions and vice versa argument but not dissociation of ions	ns [1]
	(iii)	lower temperature (particles) have less energy moving more slowly fewer collisions / lower collision rate or	[1] [1] [1]
		lower temperature (particles) have less energy fewer particles collide with the necessary energy to react note: less energy fewer successful collisions gains all 3 marks	[1] [1] [1]

[Total: 10]

3 (а (i) (mass at t = 0) – (mass at t = 5)NOTE: must have mass at t = 5 not final mass	[1]
	(i	 fastest at origin slowing down between origin and flat section gradient = 0 where gradrient = 0 three of above in approximately the correct positions 	[2]
	(ii	 3 correct comments about gradient = [2] 2 correct comments about gradient = [1] 1 correct comment about gradient = [0] 	[2]
(tart at origin and smaller gradient ame final mass just approximate rather than exact	[1] [1]
(c)		smaller surface area lower collision rate	[1] [1]
		molecules have more energy collide more frequently / more molecules have enough energy to react	[1] [1]
(d)	cond max mas	ober of moles of HCl in 40cm^3 of hydrochloric acid, centration 2.0mol / dm ³ = $0.04 \times 2.0 = 0.08$ cimum number of moles of CO ₂ formed = 0.04 cs of one mole of CO ₂ = 44g cimum mass of CO ₂ lost = $0.04 \times 44 = 1.76 \text{g}$	[1] [1] [1 [1 [Total: 15]
			[10.61. 10]

4 (8	a (I)	and (negative) electrons opposite charges attract ONLY [1] electrostatic attraction ONLY [1]	[1] [1]
	(ii)	lattice / rows / layers of lead ions / cations / positive ions NOT: atoms / protons / nuclei can slide past each other / the bonds are non-directional	[1] [1]
(I	o) (i)	anhydrous cobalt chloride becomes hydrated ACCEPT: hydrous	[1]
	(ii)	carbon dioxide is acidic sodium hydroxide and calcium oxide are bases / alkalis	[1] [1]
	(iii)	Any two of: water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate	[2]
(0	•	mber of moles of CO_2 formed = 2.112 / 44 = 0.048 mber of moles of H_2O formed = 0.432 / 18 = 0.024	[1] [1]
	x =	2 and y = 1 NOT : ecf from this line	
	for	mula is 2PbCO ₃ .Pb(OH) ₂ / Pb(OH) ₂ . 2PbCO ₃	[1]
			[Total:12]